浅析迷你型机器人 分子界的“建筑师”
这或许是来自一家高科技工厂的一幕,只是这条流水线只有几纳米长。 机器人沿着轨道缓慢移动着,并且有规律地停顿,以便伸出小心翼翼地将组件捡起来的手臂。手臂将组件连接到机器人后背上的精细构造,然后机器人向前移动并且重复这一过程——根据的设计,有条不紊地将零部件串在一起。
这或许是来自一家高科技工厂的一幕,只是这条流水线只有几纳米长。组件是氨基酸,产品是小肽,由英国曼彻斯特大学化学家DavidLeigh创建的机器人则是曾经设计出的zui复杂的分子级机器。 这并非个例。Leigh是日益增多的分子“建筑师”队伍中的一员。他们受到启发,模拟在活体细胞中发现的像机器一样的生物分子。过去25年里,这些研究人员设计出一系列令人印象深刻的开关、棘轮、发动机、推进器,甚至更多——就像它们是纳米尺度的乐高部件一样,能被集成在一起成为分子机械。与此同时,多亏了分析化学工具和使建造大型有机分子更加简单的反应的改进,进展正在加速。
一台分子“纳米汽车”沿着金属表面穿行 创建分子梭 很多今天的分子机器都可追溯至一个由目前在美国西北大学就职的化学家FraserStoddart于1991年建造的相对简单的设备。那是一个被称为轮烷的组合体,其中环状分子被一个“轴”穿过,而“轴”是两端均由体积较大的“塞子”堵住的线性分子。这个特殊的“轴”所包含的是在链的每一端能绑定到环状分子上的两个化学基团。Stoddart发现,环状分子能在这两个点之间来回移动,从而创建了*分子梭。
1994年,Stoddart改进了设计,使得“轴”拥有两个不同的结合位点。分子梭存在于溶液中,改变液体的酸度则能迫使环状分子从一个地点移动到另一个地点,从而使分子梭成为一个换向开关。类似的分子开关也许有朝一日能被用于对热、光或特定化学物质作出响应,或者打开纳米尺度集装箱“舱口”以便将载有药物分子的“货船”在适当的时间运送到人体内位置正确的传感器上。 同来自加州理工学院的JamesHeath一起,Stoddart利用上百万个轮烷制造出存储设备。夹在硅和钛的电极之间,轮烷能通过电流切换从一个状态变为另一个状态,并且被用于记录数据。这种分子“算盘”约有13微米宽,并且包含16万比特,而每一比特都由几百个轮烷构成——密度约为每平方厘米100吉比特,可同今天的商业化硬盘驱动器相媲美。 不过,“开关”并不是很给力,通常在不到100次循环后便会散架。一种可能的解决方法是将它们装载入被称为金属有机骨架(MOF)的坚硬、多孔晶体中。今年早些时候,来自加拿大温莎大学的RobertSchurko和StephenLoeb证实,他们能将约1021个分子梭打包装进1立方厘米的MOF中。上个月,Stoddart公开了一种不同的MOF,其中包含有开关控制的轮烷。这种MOF被安装在电极上,而轮烷能通过改变电压一起被开启或关闭。